1、MPEG-2码流结构
在数字电视系统中,模拟视音频信号按照MPEG-2的标准,经过抽样、量化及压缩编码形成基本码流ES,基本码流ES是不分段的连续码流。把基本码流分割成段,并加上相应的头文件打包形成的打包基本码流PES(如图1所示),PES包和包之间可以是不连续的。在传输时将PES包再分段打成有固定长度188B的传送码流TS或可变长度的节目流包(PS包)。PES只是PS转换为TS或TS转换为PS的中间步骤或桥梁,时MPEG-2数据流互换的逻辑结构。TS和PS这两种码流分别适应于不同的场合应用,节目流PS适合在相对出错较少的环境下使用,其长度是变化的,而传送流TS能够把多个节目在基于一个或多个时间标识的基础上构成一个流,传送流适合于出错较多的场合下使用。用数据包传输的优点是:网络中信息可占用不同的连接线路和简单暂存。通过数据包交织把多个数据流复用成一个新的数据流。便于解码器按照相应顺序对数据包进行灵活的整理,从而,为数据流同步和复用奠定了基础。MPEG-2的结构可分为压缩层和系统层,其中ES属于压缩层,PES和TS/PS属于系统层。
在PES层,主要是在PES包头信息中加入PTS(显示时间标签)和DTS(解码时间标签)用于视频、音频同步。而在TS流中,TS包头加入了PCR(节目时钟参考),用于解码器的系统时钟恢复。在节目流PS包头中加入SCR,它的作用与PCR域相似。
ES是编码视频数据流或音频数据流,每个ES都由若干个存取单元(AU)组成,每个视频AU或音频AU都是由头部和编码数据两部分组成,1个AU相当于编码的1幅视频图像或1个音频帧,也可以说,每个AU实际上是编码数据流的显示单元,即相当于解码的1幅视频图像或1个音频帧的取样。
我们知道,MPEG-2对视频的压缩产生I帧、P帧、B帧。把帧顺序I1帧-P4帧-B2帧-B3帧-P7帧-B5帧-B6帧的编码ES,通过打包并在每个帧中插入PTS/DTS标志,变成PES。在插入PTS/DTS标志时,由于在B帧PTS和DTS是相等的,所以无须在B帧多插入DTS(参见图1)。而对于I帧和P帧,由于经过复用后数据包的顺序会发生变化,显示前一定要存储于视频解码器的从新排序缓存器中,经过从新排序后再显示,所以一定要同时插入PTS和DTS作为从新排序的依据。例如,解码器输入的图像帧顺序为I1-P4-B2-B3-P7-B5-B6,但显示时P4一定要在B2、B3之后,在PST和DTS的指引下,经过缓存器从新排序,以从建视频帧顺序为:I1-B2-B3-P4- P7-B5-B6。
将PES包再打成更小的具固定长度的TS包时在其包头位置加入了PCR和PID(包标识)。PID的值是由用户确定的,解码器根据PID把TS(多节目传输流)上不同节目的TS包区分出来,以重建原来的ES。另外,TS的包头包含一个4bit的连续计数器,连续计数器可对PID包传送顺序计数,据计数器读数,接收端可判断是否有包丢失及包传送顺序错误。所以TS的包头具有同步、识别、检错等功能。
2、时间模型
在MPEG-2系统层时间模型中,它的端到端延迟——从信号进入编码器到信号从解码器输出是一个常数,信号总共经过编码器、编码缓冲器、多路复用器、传输或存储、解复用器、解码缓冲器以及解码器等器件的延迟。如图2所示。
所有的视频和音频经过采样(A/D变换)进入编码器后,经一恒定的延迟,在解码器分别输出显示,采样后的码率在编码器和解码器中应严格相等。在MPEG-2中,所有的时序被定义成一个共同的系统时钟(STC),故编码器、解码器的系统时钟必须同步。解码器的系统时钟应由编码器的系统时钟经恒定延迟后恢复出来,以服从于编码器。
对于PS(节目流)而言,这个时钟可以与视频或音频采样时钟之间有一个严格的特定比率,或者稍有区别,但仍足以提供精确的端到端的时序和时钟恢复。而在TS(传输流)中,此系统时钟频率与视频或音频的采样时钟之间任何时候都必须有严格的比率关系,其目的是为了在解码器中恢复视音频采样后的码率。
扫码下方或搜索关注公众号“卫星参数网”,独家内幕新闻!